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1, 
1.     Introduction.    Let    6 = [W A]    be a network with node-set    N    and arc-set 

A c N x W    having source    s e N    and sink    t e N.    Suppose that each arc 

(x,y) e A    has a positive integral traversal time    a(x,y)    and also a positive 

integral cost    c(x,y)    for increasing the traversal time of this arc, i.e., the 

cost of increasing the traversal time of arc    (x,y)    from    a(x,y)    to 

a(x,y) + Y(x,y)    is    c(x,y)Y(x,y).    The question we pose and answer is the 

following:    If a fixed budget    b    is available for expenditure on arcs of the 

network, how does one allocate the budget    b   among the arcs in such a way 

that the shortest (least time) directed path from    s    to    t    is made as large 

as possible?    It is easy to formulate this problem as a linear program, in much 

the same way as was done in [2] for the problem of optimally increasing the flow- 

capacity of a network, relative to a designated source and sink,  subject to a 

budget constraint.    For the problem at hand, it turns out that the minimum 

cost flow algorithm cf [1, Chap.   Ill,  §3], when interpreted appropriately, 

directly solves the problem paoametrically in   b.    Thus this problem provides 

another viewpoint on computing minimum cost source to sink flows in a capacity- 

constrain d network. 

V/hile we assume that we are dealing with a directed network and directed 

source-sink paths, this is merely a convenience.    Undirected (or mixed) networks 

can be handled by the usual device of passing to an equivalent directed network 

[1]. 

Various practical interpretations can be given for this problem.    It can 

be viewed as an interdiction model of transportation networks, for example. 

For undirected networks, another physical interpretation is the following. 

Suppose we have a string-model of the network, where there are    c(x,y)    strings, 

each of length    a(x,y),    joining    x    and   y.    We also have at hand an additional 

piece of string of length   b    and a pair of scissors.    We are allowed to cut up 

  I   II    Ml   ■    Mill 
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this string into pieces in any way we lik«, cut the pieces of string in the 

network and "splice in'   the additional pieces as we please, the objective being 

the following:    when we take the source-node in one hi-)d and the sink-node in 

the other, we want to be able to pull them apart as far as the extra string of 

length    b   will permit. 

2.    Linear progranming formulation.     Using well-known results about shortest 

paths [1], we can formulate the problem posed in Section 1 as follows.    Asso- 

ciate with each node    x c iJ    a (variable) potential    ir(x).    We then want to 

solve the linear program 

(2.1) maximize    ir(t) - ir(s) 

subject to the constraints 

(2.2) 

(2.3) 

(2.U) 

r(y) - ir(x) - Y(x,y)  <^a(x,y),     U,y) e A, 

Y(x,y)  > 0,     (x,y) e A, 

I c(x,y)Y(x,y) _< b. 

Here    a(x,y), c(x,y)    are given positive integers,    b    is a given nonnegative 

number, and    Y(x,y), ir(x)    are variables whose values are to be determined. 

The linear program dual to (2.1)-(2.1+) can now be written down.    Assign 

dual variables    g(x,y),    all    (x,y) e A,    to the constraints (2.2), and a dual 

variable    X    to constraint (2.U).    The program dual to (2.1)-(2.«+) is: 

(2.5) minimize    ^ a(x,y)g(xJy) + Xb 
A 
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subject to the constraints 

1, x = s, 

C2.6i g(x,N) - g(H,x) = / -1,  X = t, 

0, otherwise, 

(2.7) g(x,y) < Xc(x,y),  (x,y) e A, 

(2.8) g(x,y) > 0, (x,y) c A 

(?.9) X > 0. 

(In (2.6), 

g(x,N) =       I g(x,y), 
{ytN: (x,y)eA} 

g(N>x) ~      I g(y,x).) 
{yeN: (y,x)eA} 

Thus if we knew A, we would be seeking a least cost flow g of amount 1 from 

s to t thrv   the network G = [W^A], where arc (x,y) has unit flow cost 

a(x,y) and capacity Xc(x,y). Hence one could solve the problem, for fixed 

b, by "searching on X". There is, however, no need to do this.  A better 

way is to solve the problem parametrically in b, starting with b = 0, for 

which the solution is obvious: take X = 1, say, and send one unit along a 

shortest (least cost) directed path from s to t. This corresponds, in the 

primal problem (2.1)-(2.«0, to taking Y(x,y) = 0 all (x,y) e A and n(x) 

equal to the length (cost) of a shortest (least cost) directed path from s to x. 

1 ■    -■ 
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3.    Solution procedure.    Consider the following minimum cost flow problem 

(discussed in  [1, Chap.  Ill,  13]): 

(3.1) minimize    I a(x,y)f(x,y) 
A 

subject to the constraints 

' v, x = s, 

(3.2) f(x,rJ) - f(N,x) = < -V,  X = t, 

0, otherwise, 

(3.3) f(x,y) < c(x,y), (x,y) e A, 

(3.«+) f(x,y) > 0,  (x,y) e A. 

As described in [1], the labeling process can be used to solve this problem 

pararoetrically in v, for all v satisfying 0 f. v £ V, where V is the 

maximum amount of flow from s to t. The algorithm generates a finite sequence 

of integral flows f  of nondccreasing amounts v, p=0,l,...,P, where 

v. = 0, each f  is a least cost flow from s to t of amount v , and 
Op p 

v = V.  (The complete least cost profile a(v), for 0 < v ^ V, can then be 

obtained from the sequence of points  (v ,a ), p = 0,1,...,P, where 

a = ^ a(x,y)f (x^), by joining distinct adjacent points of this sequence in 
p  A      P 

the (v,a)-plane with line segments. The resulting function is piecewise linear 

and convex.) In the course of the algorithm, other numbers are generated: at 

stage p of the computation, certain nonnegative node integers n (x) and 

resulting nonnegative arc integers Y (x,y) = max(0,ir (y) - * (x) - a(x,y)) 

are obtained.  (Here " (x) = 0, x e N, and hence Y0(x,y) = 0,    (x,y) e A.) 

a . 1    
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These numbers satisfy the optimality properties (for the stage    p    problem) 

(3.5) w (t) = p,    «^(s) = 0, 
P P 

(3.6) » (y) - » (x) < a(x.y)  -» f (x.y) = 0, 

(37) * (y) - » (x) > a(x,y) -*• f (x.y) = c(x,y). 

(In place of (3.7), we can write 

(3.7') Y (x,y) > 0 -» f (x.y) = c(x,y).) 

It follows that (see [1, p.  117]) 

(3.8) pv    - y a(x,y)f (x,y) = T c(x,y)Y (x,y). 
p     A p A p 

For    v    > 0,    consider the corresponding functions    f  , w  ,    and    Y  • 
P P     P P 

Define 

(3.9) Ks I c(x,y)Y  (x.y) 
p     A p 

(3.10) X    = 1/v 
P P 

(3.11) g (x,y) = X f (x.y).    (x.y) e A. 

Then    it      and    Y      satisfy (2.2)-(2.4) for    b = b  ,    and    g      satisfies 
P P P P 

(2.6)-v2.8).     Moreover, from (3.5) and  (3.6) we have 

M  — - —■——Ttl^  
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(3.12) p = ir (t) - » (s) = ir (t) 
P      P      P 

= I  a(x,y)gn(x,y) + Xpbp. 'S 

Thus (* iY ) and (g ,X ) are optimal solutions, respectively, to the pair 

of dual linear programs (L,.l)-(2.4), (2.5)-(2.9), corresponding to the budget 

b = b . From this it can be shown that solving the minimum cost flow problem 

(3.1)-(3.1) parametrically in v is equivalent to solving the linear program 

(2.1)-(2.4) parametrically in b. 

We conclude with a small exan.,)le illustrating the solution process for 

(2.1)-(2.4).  Let G be the network shown in Figure 3.1 below, with the given 

data (c,a) recorded as ordered pairs on arcs: 

Fig. 3.1 

If we go through the solution process of [1, Chap.   Ill,  §3],   interpreting the 

function    c    as the arc-capacity function and the function    a    as the arc-cost 

function, the following sequence of diagramu (Figure 3.2) indicates the various 

relevant stages (corresponding to minimum    s    to    t    directed path lengths 

p = 3,  5,  6,  8,  10, 11) of the computation.     Data are recorded beside each 

arc in the form 
c    a | 

barred arcs are those where   y > 0. 

the node numbers    ir    are recorded beside each node 

■«■^■MH 
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p=3,    5=0,     X=l 

a-g +  Xb =  3 

p  =   5,    b  =  2,     X  =  1 

a-g +Xb =3+2=5 

1.1 
0.0 

\ 1.1 X 
@ i.i 

1,2 

/ 
1,0 

> 
p = 6,    b = 3,    X   = 1/2 

a-g + Xb = —2— ' 6 

a.g + Xb = 

,    b = 7,    X   =  1/3 

17 + 7 =  8 
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J:J 1,1 
0,0 

1. i 

^v "Vo p  =  10,    b  =  13,    X  = 1/4 

A tf, si 

J 27 + 13      .. 
a-g +  Xb =  jj  = 10 

3 ,0 

P = 11,    b 17 1/4 

27 + 17 
a-g +  Xb =  .  = 11 

Fig.   3.2 

The last diagram in Fig.  3.2 shows a maximum flow    f    of amount    v = 4, 

with a minimum cut     ({s jxKiy jt})    separating    s    from    t    of capacity 4 con- 

sisting of the arcs    (s,y),  (x,y),   (x,t).     For budget    b > 17,    i.e.   for least 

s    to    t    directed path length    p > 11,    we would  increase    dCy)    and    it(t)  = p 

by a constant amount    A,    causing    Y(s>yK    YCx>y)j    anci    Y^t)    to increase 

by    A.    In the example, these are the only arcs on which the budget would be 

allocated at this stage, but this is not so in general.    What is true in general 

is that other arcs,  not  in the minimum cut but on which money is being spent 

to increase their traversal times, would not receive any further allocation 

fron increased budgets.     (See, for instance,  the example analyzed in [1,  Chap.   Ill, 

§3]. 

Budgets    b    intermediate between two successive ones in Figure 3.2 can be 

allocated by touting the appropriate convex combination of the two successive 

■MMMMU 
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solutions.    Figure 3.3 shows the minimum    s    to    t    directed path length    p    as 

a function of the budget    b,    obtained by joining successive    (b,p)   pairs of 

Figure 3.2 with line segments.    The least path length   p(b>    is a concave, 

piecewise linear function of   b,    the slopes of successive pieces being equal 

to the successive values of    X = 1/v. 

Notice the way resources are expended on the arcs    (x,y)    and    (yjx),    or, 

equivalently, on the undirected arc joining    x    and    y,    throughout the 

diagrams of Figure 3.2.    For small budgets, resources are allocated to increase 

its length, for medium budgets no resources are allocated to this arc; but for 

large budgets, its length is again increased. 

0 1 2  3 U 5 6  7 8 9 10 11 12 13 14 15  16 17 

Fig.  3.3 
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